
Technical Results on Weak Bialgebras

Steve Bennoun1

In these notes2 I have gathered some technical results about (coquasi-
triangular) weak bialgebras that I use in my research. Indeed even though
[BNS99], [BS00] and [Nil] are the basic references on the topic, there is at
the moment no single reference gathering all major results about this topic.

In Section 1 I give the definitions I use then in Section 2 I prove some
properties of (coquasit-triangular) weak bialgebras.

1 Coquasi-Triangular Weak Hopf Algebras

Definition 1.1. A weak bialgebra (H,µ, η,∆, ε) over a field k is a vector
space H such that

1. (H,µ, η) forms an associative algebra with multiplication µ : H⊗H →
H and unit η : k → H,

2. (H,∆, ε) forms a coassociative coalgebra with comultiplication ∆ :
H → H ⊗H and counit ε : H → k,

3. the following compatibility conditions hold :

• Multiplicativity of the Comultiplication :

∆ ◦ µ = (µ⊗ µ) ◦ (idH ⊗ σH,H ⊗ idH) ◦ (∆⊗∆), (1)

• Weak Multiplicativity of the Counit :

ε ◦ µ ◦ (µ⊗ idH) = (ε⊗ ε) ◦ (µ⊗ µ) ◦ (idH ⊗∆⊗ idH)

= (ε⊗ ε) ◦ (µ⊗ µ) ◦ (idH ⊗∆op ⊗ idH), (2)
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• Weak Comultiplicativity of the Unit :

(∆⊗ idH) ◦∆ ◦ η = (idH ⊗ µ⊗ idH) ◦ (∆⊗∆) ◦ (η ⊗ η)

= (idH ⊗ µop ⊗ idH) ◦ (∆⊗∆) ◦ (η ⊗ η), (3)

where σV,W : V ⊗W → W ⊗ V : v ⊗ w 7→ w ⊗ v flips the two tensor
factors. Moreover µop = µ ◦ σH,H is the opposite multiplication and
∆op = σH,H ◦ ∆ is the opposite comultiplication. We also implicitly
use Mac Lane’s coherence theorem for the monoidal category Vect
[Mac71, Chap. VII], identifying (U ⊗ V )⊗W ∼= U ⊗ (V ⊗W ) as well
as V ⊗ k ∼= V ∼= k ⊗ V .

A homomorphism of weak bialgebras ϕ : H → H ′ is a homomorphism of
both unital algebra and counital coalgebra.

Remark 1.2. The name weak bialgebra is fairly self explanatory. In partic-
ular, we see that it is the compatibility between the algebra and coalgebra
structures that is weakened. In contrast to a bialgebra, the multiplicativity
of the counit

ε ◦ µ = ε⊗ ε

and and the comultiplicativity of the unit

∆ ◦ η = η ⊗ η

do not hold in general anymore and are replaced by (2) and (3) respectively.
Also, the condition ε ◦ η = 1k is absent.
From the above, we see that a weak bialgebra is a bialgebra if and only if we
have

ε ◦ µ = ε⊗ ε, ∆ ◦ η = η ⊗ η, εs = η ◦ ε, and εt = η ◦ ε.

Remark 1.3. Note that if H is a finite-dimensional weak bialgebra then so
it H∗. We say that the definition is “self-dual”.

Definition 1.4. Let (H,µ, η,∆, ε) be a weak bialgebra over a field k. It is
called coquasi-triangular if there exists a linear form r : H ⊗ H → k called
the universal r-form, that satisfies the following conditions :

i) For all x, y ∈ H

r(x⊗ y) = ε(x′y′)r(x′′ ⊗ y′′) = r(x′ ⊗ y′)ε(y′′x′′). (4)
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ii) The form r has a weak convolution inverse, i.e. there exists r−1 : H ⊗
H → k such that

r(x′ ⊗ y′) r−1(x′′ ⊗ y′′) = ε(xy). (5)

r−1(x′ ⊗ y′) r(x′′ ⊗ y′′) = ε(yx), (6)

iii) For all x, y, z ∈ H, we have

r(x′ ⊗ y′)y′′x′′ = x′y′r(x′′ ⊗ y′′), (7)

r(xy ⊗ z) = r(y ⊗ z′)r(x⊗ z′′), (8)

r(x⊗ yz) = r(x′ ⊗ y)r(x′′ ⊗ z). (9)

Note that condition (7) implies that the commutativity inside H is “con-
trolled” by the r-form, this why one often says that H is almost commutative.

A homomorphism of coquasi-triangular weak bialgebras ϕ : (H, r) →
(H ′, r′) is a homomorphism of weak bialgebra satisfying r′ ◦ (ϕ⊗ ϕ) = r.

Remark 1.5. A coquasi-triangular weak bialgebra that is a bialgebra is also
coquasi-triangular as a bialgebra. In this case, one can simply omit (4) since
it is automatically satisfied in a bialgebra. Moreover

r(x′ ⊗ y′) r−1(x′′ ⊗ y′′) = ε(x)ε(y) = r−1(x′ ⊗ y′) r(x′′ ⊗ y′′) (10)

since in a bialgebra ε(xy) = ε(x)ε(y) = ε(y)ε(x) = ε(yx).

Lemma 1.6. Let (H, r) be a coquasi-triangular weak bialgebra, then the
coopposite weak bialgebra (Hcop, r−1) is coquasi-triangular as well.

Remark 1.7. If we refer to “(8)” in the following, this indicates either the
direct use of this equality for (H, r) or the use of the corresponding equality
r−1(xy ⊗ z) = r−1(x⊗ z′)r−1(y ⊗ z′′) for (Hcop, r−1). The context will every
time make clear in which situation we are.

Definition 1.8. The weak bialgebra homomorphism

εt := (ε⊗ idH) ◦ (µ⊗ idH) ◦ (idH ⊗ σH,H) ◦ (∆⊗ idH) ◦ (η ⊗ idH) (11)

is called the target counital map whereas

εs = (idH ⊗ ε) ◦ (idH ⊗ µ) ◦ (σH,H ⊗ idH) ◦ (idH ⊗∆) ◦ (idH ⊗ η) (12)

is called the source counital map.
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Definition 1.9. A weak Hopf algebra (H,µ, η,∆, ε, S) is a weak bialgebra
(H,µ, η,∆, ε) with a linear map S : H → H, called the antipode, that satis-
fies :

µ ◦ (S ⊗ idH) ◦∆ = εs, (13)

µ ◦ (idH ⊗ S) ◦∆ = εt, (14)

S = µ ◦ (µ⊗ idH) ◦ (S ⊗ idH ⊗ S) ◦ (∆⊗ idH) ◦∆. (15)

A homomorphism of weak Hopf algebras ϕ : H → H ′ is a homomorphism
of weak bialgebras.

Remark 1.10. In this case, the Hopf algebra axioms

µ ◦ (S ⊗ idH) ◦∆ = ε ◦ η and µ ◦ (idH ⊗ S) ◦∆ = ε ◦ η

are weakened to (13) and (14) respectively whereas (15) is new.

Example 1.11. Let k be a field, G = (G0, G1) be a groupoid and f, f ′ ∈ G1.
Then groupoid algebra k[G] has a weak Hopf algebra structure given by

µ(f ⊗ f ′) =

{
f ◦ f ′ if target(f’) = source(f)

0 otherwise
,

η(1) =
∑
x∈G0

idx,

∆(f) = f ⊗ f,
ε(f) = 1 ∀f ∈ G1,

S(f) = f−1.

Note that, due to its construction, a groupoid algebra is always cocommu-
tative. Moreover, this is an example of the weak Hopf algebra that is not a
Hopf algebra.

Lemma 1.12. Let ϕ : H → H ′ be a homomorphism of weak bialgebras and
let H,H ′ be weak Hopf algebras. Then S ′ ◦ ϕ = ϕ ◦ S.
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Proof. Using the weak Hopf algebra axioms, we find

S ′(ϕ(x))
15
= S ′(ϕ(x)′)ϕ(x)′′S ′(ϕ(x)′′′)
13
= ε′s(ϕ(x)′)S ′(ϕ(x)′′)

= ε′s(ϕ(x′))S ′(ϕ(x′′))
?
= ϕ(εs(x

′))S ′(ϕ(x′′))
13
= ϕ(S(x′)x′′)S ′(ϕ(x′′′))

= ϕ(S(x′))ϕ(x′′)S ′(ϕ(x′′′))

= ϕ(S(x′))ϕ(x′′)′S ′(ϕ(x′′)′′)
14
= ϕ(S(x′))ε′t(ϕ(x′′))
?
= ϕ(S(x′))ϕ(εt(x

′′))
14
= ϕ(S(x′)a′′S(x′′′))
15
= ϕ(S(x)),

where ? uses that ϕ(1) = 1′ and ε′(ϕ(x)) = ε(x) and thus ϕ(εs(x)) = ε′s(x)
and ϕ(εt(x)) = ε′t(x).

Notation 1.13. From now on we shall abbreviate weak bialgebra by WBA
and weak Hopf algebra by WHA. Moreover, coquasi-triangular will be written
“CQT”; thus a coquasi-triangular weak bialgebra will thus be called CQT
WBA.

We shall now introduce a concept that will play an important role in the
rest of this thesis.

Definition 1.14. Let H be a WBA. An element g ∈ H is called right group-
like if

∆(g) = g1′ ⊗ g1′′ and εs(g) = 1, (16)

it is called left group-like if

∆(g) = 1′g ⊗ 1′′g and εt(g) = 1. (17)

An element g ∈ H is called group-like if it is both right and left group-like.
We denote the set of group-like elements of H by G(H).

Notation 1.15. In what follows we sometimes have two or more units show-
ing up in our computations. In order differentiate them and keep track of
which one is which one, we use subscripts. Hence we have, for example,
εs(a) = 1′ε(a1′′) and then 1εs(a) = 111

′
2ε(a1′′2).
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Lemma 1.16. The set of group-like elements G(H) of a WBA H is a monoid.

Proof. i) 1 ∈ H is group-like.
We have 11 · 1′2⊗ 13 · 1′′2 = 1′⊗ 1′′ = ∆(1) and similarly 1′1 · 12⊗ 1′′1 · 13 =
∆(1). Furthermore, εs(1) = 1′1ε(12 ·1′′1) = 1 and εt(1) = ε(1′1 ·12)1

′′
1 = 1.

ii) If g, h ∈ G(H) then gh ∈ G(H).
We have

∆(gh) = (gh)′ ⊗ (gh)′′ = g′h′ ⊗ g′′h′′ = (g1′1)(1
′
2h)⊗ (g1′′1)(1′′2h)

= g(1′11
′
2h)⊗ g(1′′11′′2h) = g(1′h)⊗ g(1′′h) = g(h1′)⊗ g(h1′′)

= (gh)1′ ⊗ (gh)1′′,

by definition of the comultiplication; associativity; definition of group-
like; associativity; associativity and unit axiom; definition of group-like;
associativity.
Similarly, ∆(gh) = 1′(gh)⊗ 1′′(gh). We furthermore have

εs(gh)
20
= εs(εs(g)h) = ε(1 · h) = ε(h) = 1,

where we have used that g is group-like. In a similar way, εt(gh) = 1.

Lemma 1.17. Let H be a WHA. Then every group-like is invertible with
g−1 = S(g) and G(H) forms a group.

Proof. Let g ∈ H be group-like. Then

S(g)g = S(g)1g = S(g)εs(1)g = S(g)s(1′)1′′g

= S(1′g)1′′g = S(g′)g′′ = εs(g) = 1,

and similarly gS(g) = 1. Hence g−1 = S(g).

Let us now look at the group structure of G(H). From the previous
lemma we know that 1 is group-like and that if g and h are in G(H) then so
is gh. It remains to prove that for g group-like, so is g−1. We have

∆(g−1) = (g−1)′ ⊗ (g−1)′′ = g−1g(g−1)′ ⊗ g−1g(g−1)′′

= g−1g(1g−1)′ ⊗ g−1g(1g−1)′′ = g−1g1′(g−1)′ ⊗ g−1g1′′(g−1)′′

= g−1(g1′)(g−1)′ ⊗ g−1(g1′′)(g−1)′′ = g−1g′(g−1)′ ⊗ g−1g′′(g−1)′′

= g−1(gg−1)′ ⊗ g−1(gg−1)′′

= g−11′ ⊗ g−11′′,
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and similarly ∆(g−1) = 1′g−1 ⊗ 1′′g−1. Finally, we have

εs(g
−1) = εs(1g

−1) = εs(εs(g)g−1)
oo
= εs(gg

−1) = εs(1) = 1,

and similarly εt(g
−1) = 1, hence g−1 is group-like.

Convention 1.18. In what follows we shall abbreviate weak bialgebra by
“WBA” and coquasi-triangular by “CQT”.

2 Technical Results about WBAs

In this section we present technical results need in the rest of this thesis. Most
of the results presented here are scattered around the literature while others
are commonly used but not proved in any paper. Hence, out of completeness,
we prove here (nearly all) the lemmata and propositions we shall need in the
next chapters.

Lemma 2.1. Let H be a WBA, x, y ∈ H. We have

εs(1
′)⊗ 1′′ = 1′ ⊗ 1′′ and 1′ ⊗ εt(1′′) = 1′ ⊗ 1′′, (18)

ε(εs(x)y) = ε(xy) and ε(xεt(y)) = ε(xy), (19)

εs(εs(x)y) = εs(xy) and εt(xεt(y)) = εt(xy). (20)

Proof. i) We have εs(1
′)⊗ 1′′ = 1′1ε(1

′
21
′′
1)⊗ 1′′2

3
= 1′ε(1′′)⊗ 1′′′ = 1′ ⊗ 1′′,

and similarly 1′ ⊗ εt(1′′) = 1′ ⊗ 1′′.

ii) We have ε(εs(x)y) = ε(1′ε(x1′′)y) = ε(1′y)ε(x1′′)
2
= ε(x1y) = ε(xy).

We similarly prove that ε(xεt(y)) = ε(xy).

iii) Equalities 20 are direct consequences of 18 and 2.

Lemma 2.2. Let H be a WBA and x ∈ H. Then

εs(x) = 1′ε(εs(x)1′′), (21)

∆εs(x) = 1′ ⊗ εs(x)1′′, (22)

1′ ⊗ 1′′εs(x) = εs(x)′ ⊗ εs(x)′′, (23)

x′ ⊗ εs(x′′) = x1′′ ⊗ εs(1′′), (24)

εs(a)′ ⊗ εs(a)′′ = εs(εs(a)′)⊗ εs(a)′′, (25)

εt(a)′ ⊗ εt(a)′′ = εt(a)′ ⊗ εt(εt(a)′′). (26)
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Proof. i) Using (2), we have

1′ε(εs(x)1′′) = 1′2ε(1
′
1ε(x1′′1)1′′2)

= 1′2ε(x1′′1)ε(1′11
′′
2)

= ε(x111
′′
2)1′2

= 1′ε(x1′′)

= εs(x).

ii) Using (3) we find

∆εs(x) = ∆(1′ε(x1′′))

= 1′ ⊗ 1′′ε(x1′′′)

= 1′1 ⊗ 1′21
′′
1ε(x1′′2)

= 1′ ⊗ εs(x)1′′.

iii) Using (3) we find

1′ ⊗ 1′′εs(x) = 1′1 ⊗ 1′′11′2ε(x1′′2)

= 1′ ⊗ 1′′ε(x1′′′)

= (1′)′ ⊗ (1′)′′ε(x1′′)

= εs(x)′ ⊗ εs(x)′′.

iv) We have

x′ ⊗ εs(x′′) = x′ ⊗ 1′ε(x′′1′′)

= (x11)
′ε((x11)

′′1′′2)⊗ 1′2
= x1′1ε(x

′′1′′11′′2)⊗ 1′2
2
= x′1′1ε(x

′′1′′1)ε(1′′′1 1′′2)⊗ 1′1
= x(1′1)

′ε(x′′(1′1)
′′)ε(1′′11′′2)⊗ 1′2

= (x1′1)
′ε((x11)

′′)ε(1′′11′′2)⊗ 1′2
= x11 ⊗ 1′2ε(1

′′
11′′2)

= x1′ ⊗ εs(1′′).
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v) Using (3) again, we find

εs(a)′ ⊗ εs(a)′′ = 1′ ⊗ 1′′ε(a1′′′) = 1′1 ⊗ 1′′11′2ε(a1′′2)

= 1′1ε(1
′′
1)⊗ 1′′′1 1′2ε(a1′′2) = 1′1ε(1

′
21
′′
1)⊗ 1′′21′3ε(a1′′3)

= εs(1
′
1)⊗ 1′′11′2ε(a1′′2) = εs(1

′)⊗ 1′′ε(a1′′′)

= εs(εs(a)′)⊗ εs(a)′′.

We prove in a similar way that εt(a)′ ⊗ εt(a)′′ = εt(a)′ ⊗ εt(εt(a)′′).

Lemma 2.3. Let (H, r) be a CQT WBA. Then

r(a⊗ 1) = r(1⊗ a) = ε(a). (27)

Proof. We have

ε(a) = ε(1 · a)
5
= r(1′ ⊗ a′)r−1(1′′ ⊗ a′′) = r(1′1 · 12 ⊗ a′)r−1(1′′1 ⊗ a′′)

8
= r(12 ⊗ a′)r(1′1 ⊗ a′′)r−1(1′′1 ⊗ a′′′)

5
= r(12 ⊗ a′)ε(11 · a′′)

= r(1⊗ a).

Similarly, ε(a) = r(a⊗ 1).

The next lemma will give us the tools required to prove (41).

Lemma 2.4. Let H be a WBA and a, b ∈ H. Then

εt(a
′)⊗ εs(a′′) = εt(a

′′)⊗ εs(a′), (28)

εt(a
′)ε(a′′b) = εt(ab), (29)

ε(ab′)εs(b
′′) = εs(ab), (30)

εt((ab)
′)⊗ εs((ab)′′) = εt(a

′)ε(a′′b′)⊗ εs(b′′), (31)

εt((ab)
′)⊗ εs((ab)′′) = εt(a

′)⊗ εs(b′)ε(a′′b′′), (32)

εt((ab)
′)⊗ εs((ab)′′) = ε(a′b′)εt(a

′′)⊗ εs(b′′). (33)

Proof. i) We have

εt(a
′)⊗ εs(a′′) = ε(1′1a

′)1′′1 ⊗ 1′2ε(a
′′1′′2)

2
= ε(1′1a

′′)1′′1 ⊗ 1′2ε(a
′1′′2)

= εt(a
′′)⊗ εs(a′).
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ii) Here we have

εt(a
′)ε(a′′b) = ε(1′a′)1′′ε(a′′b)

2
= ε(1′ab)1′′ = εt(ab).

We similarly prove that ε(ab′)εs(b
′′) = εs(ab).

iii) We have

εt((ab)
′)⊗ εs((ab)′′) = εt(a

′b′)⊗ εs(a′′b′′)
♦
= εt(a

′)ε(a′′b′)⊗ ε(a′′′b′′)εs(b′′′)
= εt(a

′)ε(a′′b′)⊗ εs(b′′),

where ♦ follows from (29) and (30).

iv) We have

εt((ab)
′)⊗ εs((ab)′′)

31
= εt(a

′)ε(a′′b′)⊗ εs(b′′)
19
= εt(a

′)ε(a′′εt(b
′))⊗ εs(b′′)

28
= εt(a

′)ε(a′′εt(b
′′))⊗ εs(b′)

19
= εt(a

′)⊗ εs(b′)ε(a′′b′′).

We similarly prove that εt((ab)
′)⊗ εs((ab)′′) = ε(a′b′)εt(a

′′)⊗ εs(b′′).

The next lemma will help us prove (44).

Lemma 2.5. Let H be a WBA and a, b ∈ H. Then

aεt(b) = ε(a′b)a′′, (34)

εs(a)b = b′ε(ab′′), (35)

ε(ac′)ε(bc′′) = ε(aεt(c)
′)ε(bεt(c)

′′), (36)

εt(a
′)⊗ εt(a′′) = εt(εt(a)′)⊗ εt(εt(a)′′), (37)

ε(ab′)εs(εt(b
′′)) = ε(a′b)εs(a

′′). (38)

(39)

If H is moreover CQT with r-form r, then

r(a′ ⊗ b)εs(εt(a′′)) = r(a⊗ b′)εs(b′′). (40)
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Proof. i) We have

aεt(b) = ε((aεt(b))
′)(aεt(b))

′′

= ε((aε(1′b)1′′)′)(aε(1′b)1′′)′′

= ε(a′1′′)ε(1′b)a′′1′′′

2
= ε(a′1′b)a′′1′′

= ε((a1)′b)(a1)′′

= ε(a′b)a′′.

We similarly prove that εs(a)b = b′ε(ab′′).

ii) We have

ε(ac′)ε(bc′′)
35
= ε(aεs(b)c)

19
= ε(aεs(b)εs(c))

35
= ε(aεt(c)

′)ε(bεt(c)
′′).

iii) We have

εt(a
′)⊗ εt(a′′) = ε(1′1a

′)1′′1 ⊗ ε(1′2a′′)1′′2
36
= ε(1′1εt(a)′)1′′1 ⊗ ε(1′2εt(a)′′)1′′2
= εt(εt(a)′)⊗ εt(εt(a)′′).

iv) We have

ε(ab′)εs(εt(b
′′))

19
= ε(aεt(b

′))εs(εt(b
′′))

37
= ε(aεt(εt(b)

′))εs(εt(εt(b)
′′))

♦
= ε(aεt(b)

′)εs(εt(b)
′′)

30
= εs(aεt(b))
34
= ε(a′b)εs(b

′′),

where ♦ follows from (19) and (26).

v) We have

r(a′ ⊗ b)εs(εt(a′′))
4
= r(a′ ⊗ b′)ε(b′′a′′)εs(εt(a′′′))
38
= r(a′ ⊗ b′)ε(b′′a′′)εs(b′′′)
4
= r(a⊗ b′)εs(b′′).
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Lemma 2.6. Let (H, r) be a CQT WBA and a, b ∈ H. Then

εt(a
′)⊗ εs(b′)r(a′′ ⊗ b′′) = r(a′ ⊗ b′)εt(b′′)⊗ εs(a′′), (41)

r(a⊗ εt(b)) = ε(ab), (42)

r(a⊗ εs(b)) = ε(ba), (43)

r(εs(a)⊗ b) = ε(bεs(a)), (44)

r−1(a⊗ εs(b)) = ε(aεs(b)), (45)

r−1(εt(a)⊗ b) = ε(ba). (46)

Proof. i) We have

εt(a
′)⊗ εs(b′)r(a′′ ⊗ b′′)

4
= εt(a

′)⊗ εs(b′)ε(a′′b′′)r(a′′′ ⊗ b′′′)
32
= εt((a

′b′)′)⊗ εs((a′b′)′′)r(a′′ ⊗ b′′)
7
= r(a′ ⊗ b′)εt((b′a′)′)⊗ εs((b′a′)′′)
33
= r(a′ ⊗ b′)ε(b′′a′′)εt(b′′′)⊗ εs(a′′′)
4
= r(a′ ⊗ b′)εt(b′′)⊗ εs(a′′).

ii) We have

r(a⊗ εt(b)) = r(a⊗ ε(1′b)1′′) = ε(1′b)r(a⊗ 1′′)
19
= ε(εs(1

′)b)r(a⊗ 1′′) = ε(a′)ε(εs(1
′)b)r(a′′ ⊗ 1′′)

= ε(εt(a
′))ε(εs(1

′)b)r(a′′ ⊗ 1′′)
41
= r(a′ ⊗ 1′)ε(εs(a

′′)b)ε(εt(1
′′))

= r(a′ ⊗ 1′)ε(εs(a
′′)b)ε(1′′) = r(a′ ⊗ 1)ε(εs(a

′′)b)

= r(a′ ⊗ 1)ε(a′′b)
27
= ε(a′)ε(a′′b)

= ε(ab).

Similarly, one has that r(a⊗ εs(b)) = ε(ba).
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iii) We have

r(εs(a)⊗ b) = r(1′ε(a1′′)⊗ b)
♦
= ε(εs(a)εt(1

′′))r(1′ ⊗ b)
= ε(1′2ε(a1′′2)ε(1′31

′′
1)1′′3)r(1′1 ⊗ b)

= ε(1′31
′′
1)ε(1′21

′′
3)ε(a1′′2)r(1′1 ⊗ b)

3
= ε(1′31

′′
1)ε(1′′31′2)ε(a1′′2)r(1′1 ⊗ b)

= ε(ε(1′31
′′
1)1′′31′2ε(a1′′2))r(1′1 ⊗ b)

= ε(εt(1
′′)εs(a))r(1′ ⊗ b)

19
= ε(εs(εt(1

′′))εs(a))r(1′ ⊗ b)
40
= ε(εs(b

′′)εs(a))r(1⊗ b′)
?
= ε(b′′εs(a))ε(b′)

= ε(bεs(a)),

where ♦ follows from (18) and (19) and ? from (19) and (27).

Notation 2.7. We what follows we often take many times the comultipli-
cation of an element. In order to make it easy to read we slightly modify
Sweedler’s notation; namely we use roman numbers to “orders” higher than
three thus a′′′′ becomes aIV whereas a′′′′′ is written aV . Using this convention
we have, for example,

(∆⊗∆⊗∆) ◦ (∆⊗ id) ◦∆(a) = (∆⊗∆⊗∆)(a′ ⊗ a′′ ⊗ a′′′)
= a′ ⊗ a′′ ⊗ a′′′ ⊗ aIV ⊗ aV ⊗ aV I .

Proposition 2.8. Let (H, r) be a CQT WBA, a, b ∈ H and g ∈ G(H) a
group-like element. Then

i) r−1(a′ ⊗ g)r(a′′ ⊗ g) = ε(a), (47)

ii) r(a′ ⊗ g)r−1(a′′ ⊗ g) = ε(a), (48)

iii) r(a⊗ g′)r(b⊗ g′′) = r(a′ ⊗ g)r(b′ ⊗ g)ε(b′′a′′), (49)

iv) r−1(a⊗ g′)r−1(b⊗ g) = ε(a′b′)r−1(a′′ ⊗ g)r−1(b′′ ⊗ g). (50)

Proof. In this proof, we indicate by ∗ the equalities where we use that g is
group-like.
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i) We have

r−1(a′ ⊗ g)r(a′′ ⊗ g) = r−1(a′ ⊗ g)ε((a′′1)′)ε((a′′1)′′)r(aIV ⊗ g)

= r−1(a′ ⊗ g)ε(a′′1′)ε(a′′′1′′)r(aIV ⊗ g)
42
= r−1(a′ ⊗ g)ε(a′′1′)r(a′′′ ⊗ εt(1′′))r(aIV ⊗ g)
18
= r−1(a′ ⊗ g)ε(a′′1′)r(a′′′ ⊗ 1′′)r(aIV ⊗ g)
9
= r−1(a′ ⊗ g)ε(a′′1′)r(a′′′ ⊗ 1′′g)
18
= r−1(a′ ⊗ g)ε(a′′εs(1

′))r(a′′′ ⊗ 1′′g)
45
= r−1(a′ ⊗ g)r−1(a′′ ⊗ εs(1′))r(a′′′ ⊗ 1′′g)
18
= r−1(a′ ⊗ g)r−1(a′′ ⊗ 1′)r(a′′′ ⊗ 1′′g)
9
= r−1(a′ ⊗ 1′g)r(a′′ ⊗ 1′′g)
∗
= r−1(a′ ⊗ g′)r(a′′ ⊗ g′′)
6
= ε(ga)

19
= ε(εs(g)a)

∗
= ε(1a)

= ε(a).

ii) Similar to i).

iii) Here we have

r(a⊗ g′)r(b⊗ g′′) ∗= r(a⊗ g1′)r(b⊗ g1′′)
9
= r(a′ ⊗ g)r(a′′ ⊗ 1′)r(b′ ⊗ g)r(b′′ ⊗ 1′′)
8
= r(a′ ⊗ g)r(b′ ⊗ g)r(b′′a′′ ⊗ 1)
27
= r(a′ ⊗ g)r(b′ ⊗ g)ε(b′′a′′).

iv) Similar to iii).
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